Michael D. Plummer (michael.d.plummer@vanderbilt.edu), Department of Mathematics, Vanderbilt University, Nashville, TN 37125, Dong Ye* (dong.ye@mtsu.edu), Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, and Xiaoya Zha (xiaoya.zha@mtsu.edu), Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132. On W_v-Paths in Polyhedral Maps on Surfaces.

The W_v -path conjecture states that any two vertices of a simple polytope can be joined by a path that does not revisit any facet. This is equivalent to the well-known Hirsch Conjecture. Klee conjectured even more, namely that the W_v conjecture is true for all general cell complexes. Klee proved that the W_v -conjecture is true for 3-polytope (3-connected plane graphs). The general W_v -path conjecture was verified for projective plane and torus by Barnette, and the Klein bottle by Pulapaka and Vince. Recently, however, Santos disproved the Hirsch conjecture.

For every surface Σ , define a function $f(\Sigma)$ such that if for every graph polyhedrally embedded in Σ and for every pair of vertices x and y in V(G), $\kappa_G(x, y) \ge f(\Sigma)$, then there exists a W_v -path joining x and y. Let $\chi(\Sigma)$ be the Euler characteristic of Σ . We show that $f(\Sigma) = 3$ if Σ is the sphere, and for all other surfaces $3 - \tau(\Sigma) \le f(\Sigma) \le 9 - 4\chi(\Sigma)$, where $\tau(\Sigma) = \chi(\Sigma)$ if $\chi(\Sigma) < -1$ and 0 otherwise. Further, if x and y are not cofacial, we show that G has at least $\kappa_G(x, y) + 4\chi(\Sigma) - 8$ internally disjoint W_v -paths joining x and y. The bound is sharp for the sphere. (Received January 16, 2016)