Michael D. Plummer* (michael.d.plummer@vanderbilt.edu), Nashville, TN 37240, and Robert Aldred (raldred@maths.otago.ac.nz), Dunedin, New Zealand. Matching extension in prism graphs.
If G is any graph, the prism graph of G, denoted $P(G)$, is the cartesian product of G with a single edge, or equivalently, the graph obtained by taking two copies of G, say G_{1} and G_{2}, with the same vertex labelings and joining each vertex of G_{1} to the vertex of G_{2} having the same label by an edge. A connected graph G has property $E(m, n)$ (or more briefly " G is $E(m, n)$ ") if for every pair of disjoint matchings M and N in G with $|M|=m$ and $|N|=n$ respectively, there is a perfect matching F in G such that $M \subseteq F$ and $N \cap F=\emptyset$. A graph which has the $E(m, 0)$ property is also said to be m-extendable. In this paper, we begin the study of the $E(m, n)$ properties of the prism graph $P(G)$ when G is an arbitrary graph as well as the more special situations when, in addition, G is bipartite or bicritical. (Received January 14, 2016)

