1117-05-117 Vitaly I. Voloshin* (vvoloshin@troy.edu). Coloring Mixed Hypergraphs: a survey of some recent results and open problems. Preliminary report.
Mixed hypergraph is a triple $\mathcal{H}=(V, \mathcal{C}, \mathcal{D})$ with vertex set V and two families of subsets called C-edges and D-edges. In a proper coloring of vertices, every C-edge has two vertices of the same color, and every D-edge has two vertices of different colors. A mixed hypergraph \mathcal{H} is called colorable if it admits at least one proper coloring; otherwise it is uncolorable.

A k-partition of a vertex set is called feasible if it is induced by a proper coloring using precisely k colors. For an n-vertex mixed hypergraph, the chromatic spectrum is the sequence $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$, where each r_{k} is the number of feasible k-partitions.

Mixed hypergraph is called C-perfect if, for any induced subhypergraph, the upper chromatic number coincides with the maximum number of vertices which contain no C-edge. Mixed hypergraph is called minimal C-imperfect, if it is not C-perfect but any induced subhypergraph is C-perfect.

We survey some recent results and open problems concerning chromatic spectrum and C-perfection of mixed hypergraphs.
(Received January 07, 2016)

