1127-60-366 Michael Woodroofe*, 1405 Maywood, Ann Arbor, MI 48103, and Dalibor Volny. Quenched Central Limit Theorem for Linear Processes.

For a linear process, $X_k = \sum_{j=0}^{\infty} a_j \epsilon_{k-j}$, where ϵ_j form a stationary sequence of martingale differences for which $E(\epsilon_j^2) < \infty$ and a_j are square sumable, let $S_n = X_1 + \cdots + X_n$, and observe that $S_n = \sum_{j=0}^n b_{n-j}\epsilon_j$, where $b_n = a_0 + \cdots + a_n$, so that $\sigma_n^2 := E(S_n^2) = (b_0^2 + \cdots + b_n^2)E(\epsilon_0^2)$. Ibragimov showed that if $\sigma_n \to \infty$ as $n \to \infty$, then the distribution of S_n/σ_n converges to the standard normal distribution. The condition $\sigma_n \to \infty$, only restricts the coefficients a_j . In the talk, I will present conditions under which the convergence is quenched (that is, the conditional distributions, given $\cdots \epsilon_1, \epsilon_0$ converge to the standard normal w.p.one. (Received February 07, 2017)