1127-60-160

Panki Kim and Renming Song^{*} (rsong@illinois.edu), Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St, Urbana, IL 61801, and Zoran Vondracek. Potential theory of subordinate killed Brownian motions.

Let W^D be a killed Brownian motion in a domain $D \subset \mathbb{R}^d$ and S an independent subordinator with Laplace exponent ϕ . The process Y^D defined by $Y_t^D = W_{S_t}^D$ is called a subordinate killed Brownian motion. It is a Hunt process with infinitesimal generator $-\phi(-\Delta|_D)$, where $\Delta|_D$ is the Dirichlet Laplacian. In this paper we study the potential theory of Y^D under a weak scaling condition on the derivative of ϕ . We first show that non-negative harmonic functions of Y^D satisfy the scale invariant Harnack inequality. Subsequently we prove two types of scale invariant boundary Harnack principles with explicit decay rates for non-negative harmonic functions of Y^D . The first boundary Harnack principle deals with a $C^{1,1}$ domain D and non-negative functions which are harmonic near the boundary of D, while the second one is for a more general domain D and non-negative functions which are harmonic near the boundary of an interior open subset of D. The obtained decay rates are not the same, reflecting different boundary and interior behaviors of Y^D . (Received February 01, 2017)