1127-49-350 Jochen Denzler* (denzler@math.utk.edu), Dept of Mathematics, Ayres Hall, 1403 Circle Dr, Knoxville, TN 37996-1320. The Oval Problem and Its Euler-Lagrange Equation. Preliminary report.
The problem to minimize the principal eigenvalue of a Schrödinger operator $-d^{2} / d s^{2}+\kappa^{2}$ (with κ the curvature) on a loop of fixed length, as a function of the geometry of the loop, has been known as the Oval Problem. Existence and regularity of a solution (which are nontrivial due to a lack of compactness and coercivity) have been proved in prior work. The Euler-Lagrange equation for the problem seems rather daunting, and a proof for the conjectured family of minimizers has been elusive for over a decade. Nevertheless, the EL equation of the problem displays some intriguing structure that gives rise to insight (including an abundance of non-minimal critical points). I will elaborate on some details of this structure. This is a preliminary report on work in progress. (Received February 07, 2017)

