1127-41-95Aaron M. Yeager* (aaron.yeager@okstate.edu), 913 S. Orchard Street, Stillwater, OK 74074,
and Maxim L. Yattselev, Department of Mathematical Sciences, 402 North Blackford Street,
Indianapolis, IN 46202. Zeros of Real Random Polynomials Spanned by OPUC.

Let $\{\varphi_i\}_{i=0}^{\infty}$ be a sequence of orthonormal polynomials on the unit circle with respect to a probability measure μ . We study zero distribution of random linear combinations of the form

$$P_n(z) = \sum_{i=0}^{n-1} \eta_i \varphi_i(z),$$

where $\eta_0, \ldots, \eta_{n-1}$ are i.i.d. standard Gaussian variables. We use the Christoffel-Darboux formula to simplify the density functions provided by Vanderbei for the expected number real and complex of zeros of P_n . From these expressions, under the assumption that μ is in the Nevai class, we deduce the limiting value of these density functions away from the unit circle. Under the mere assumption that μ is doubling on subarcs of the unit circle centered at 1 and -1, we show that the expected number of real zeros of P_n is at most

$$(2/\pi)\log n + O(1),$$

and that equality holds when μ is in the Szegő-Bernstein class. We conclude with providing discrepancy results that estimate the expected number of complex zeros of P_n in shrinking neighborhoods of compact subsets of the unit circle. (Received January 25, 2017)