1127-37-100 Mrinal K Roychowdhury* (mrinal.roychowdhury@utrgv.edu), School of Mathematical and Statistical Scienc, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539. Optimal Quantization.

Let \mathbb{R}^d denote the *d*-dimensional Euclidean space, $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^d for any $d \ge 1$, and $n \in \mathbb{N}$. Then, the *n*th quantization error for a Borel probability measure P on \mathbb{R}^d is defined by

$$V_n := V_n(P) = \inf \left\{ \int \min_{a \in \alpha} \|x - a\|^2 dP(x) : \alpha \subset \mathbb{R}^d, \ \operatorname{card}(\alpha) \le n \right\},\$$

where the infimum is taken over all subsets α of \mathbb{R}^d with $\operatorname{card}(\alpha) \leq n$. If $\int ||x||^2 dP(x) < \infty$ then there is some set α for which the infimum is achieved. Such a set α for which the infimum occurs and contains no more than n points is called an *optimal set of n-means*, or *optimal set of n-quantizers*. Recently, we have determined the optimal sets of n-means and nth quantization error for some singular and nonsingular continuous probability measures. I will talk about it. (Received January 26, 2017)