1127-35-104 Ratnasingham Shivaji, Inbo Sim and Byungjae Son* (b_son@uncg.edu), 830 West Market Street, Apt 623, Greensboro, NC 27401. Uniqueness results for classes of semipositone p-Laplacian problems.

We consider steady state reaction diffusion equations on the exterior of a ball, namely, boundary value problems of the form:

$$\begin{cases} -\Delta_p u = \lambda K(|x|) f(u) & \text{in } \Omega_E, \\ Bu = 0 & \text{on } |x| = r_0, \\ u \to 0 & \text{when } |x| \to \infty, \end{cases}$$

where $\Delta_p z := \operatorname{div}(|\nabla z|^{p-2}\nabla z)$, $1 , <math>\lambda > 0$, $\Omega_E := \{x \in \mathbb{R}^n \mid |x| > r_0 > 0\}$ and the boundary operator B is either $Bu \equiv u$ or $Bu \equiv \frac{\partial u}{\partial y} + c(u)u$ where $c \in C((0,\infty), (0,\infty))$ and $\frac{\partial u}{\partial \eta}$ is the outward normal derivative of u on $|x| = r_0$. Here the weight function $K \in C^1([r_0,\infty), (0,\infty))$ satisfies $\lim_{r\to\infty} K(r) = 0$, and the reaction term $f \in C^1[0,\infty)$ is strictly increasing and satisfies f(0) < 0, $\lim_{s\to\infty} f(s) = \infty$, $\lim_{s\to\infty} \frac{f(s)}{s^{p-1}} = 0$ and $\frac{f(s)}{s^q}$ is nonincreasing on $[a,\infty)$ for some a > 0 and $q \in (0, p-1)$. We establish uniqueness results for positive radial solutions for $\lambda \gg 1$. (Received January 26, 2017)