1127-32-94 **Steve Zelditch**, 2033 Sheridan Rd, Evanston, IL 60208, and **Peng Zhou*** (pengzhou@math.northwestern.edu), 2033 Sheridan Rd, Evanston, IL 60208. Zeros of random sections in S¹-equivariant line bundles.

Let (L, h) be an positive hermitian line bundle over a compact Kahler manifold $(M, \omega = Ric(h))$, with an holomorphic Hamiltonian S^1 -action acting on M and L, corresponding to the Hamiltonian $H : M \to \mathbb{R}$. For any interval I = [a, b] in the image H(M), and any positive integer k, we define a subspace $S_{I,k} \subset H^0(M, L^k)$ spanned by S^1 -equivariant sections whose weights lie in the interval k[a, b]. This talk is about the zero loci for random sections in $S_{I,k}$, and their different behaviors in the 'allowed region' $A = H^{-1}([a, b])$ and the 'forbidden region' $F = M \setminus A$. (Received January 25, 2017)