1127-14-282 **Robert Silversmith*** (rsilvers@umich.edu). A mirror theorem for $Sym^{d}(\mathbb{P}^{r})$.

Through 3 general points and 6 general lines in \mathbb{P}^3 , there are exactly 190 twisted cubics; 190 is a Gromov-Witten invariant of \mathbb{P}^3 . Mirror symmetry is a conjecture about the structure of all Gromov-Witten invariants of a smooth complex variety (or orbifold). The conjecture is known for toric orbifolds and some of their complete intersections. We prove it in the case of the nontoric orbifold $\operatorname{Sym}^d(\mathbb{P}^r)$. This orbifold is of particular interest because when r = 2, its Gromov-Witten invariants are conjecturally related to those of the Hilbert scheme $\operatorname{Hilb}^d(\mathbb{P}^2)$. (Received February 06, 2017)