1127-14-282 Robert Silversmith* (rsilvers@umich.edu). A mirror theorem for $\operatorname{Sym}^{d}\left(\mathbb{P}^{r}\right)$.
Through 3 general points and 6 general lines in \mathbb{P}^{3}, there are exactly 190 twisted cubics; 190 is a Gromov-Witten invariant of \mathbb{P}^{3}. Mirror symmetry is a conjecture about the structure of all Gromov-Witten invariants of a smooth complex variety (or orbifold). The conjecture is known for toric orbifolds and some of their complete intersections. We prove it in the case of the nontoric orbifold $\operatorname{Sym}^{d}\left(\mathbb{P}^{r}\right)$. This orbifold is of particular interest because when $r=2$, its Gromov-Witten invariants are conjecturally related to those of the Hilbert scheme $\operatorname{Hilb}^{d}\left(\mathbb{P}^{2}\right)$. (Received February 06, 2017)

