1127-14-268 Rohini Ramadas* (ramadas@umich.edu). Dynamics on the moduli space $\mathcal{M}_{0,n}$.

The moduli space $\mathcal{M}_{0,n}$ parametrizes all ways of labeling *n* distinct points on the Riemann sphere \mathbb{P}^1 , up to Möbius tranformations. Let \mathcal{H} be a Hurwitz space parametrizing holomorphic maps, with prescribed branching, from one *n*-marked \mathbb{P}^1 to another. \mathcal{H} admits two different maps to $\mathcal{M}_{0,n}$: a "target" map π_t and a "source" map π_s . Since π_t is a covering map, $\pi_s \circ \pi_t^{-1}$ is a multi-valued map – a Hurwitz correspondence – from $\mathcal{M}_{0,n}$ to itself. Hurwitz correspondences arise through work of Koch in topology and Teichmüller theory through Thurston's topological characterization of rational functions on \mathbb{P}^1 . I will discuss their dynamics via numerical invariants called dynamical degrees. (Received February 05, 2017)