Mojtaba Moniri* (m-moniri@wiu.edu). Approximate closed formulas for (the g-inverse of)

 binary lengths of a Wolfram sequence.For a sequence c of approximate multiplication by $\frac{3}{2}$, namely $x_{n+1}=\left\lfloor\frac{3}{2} x_{n}\right\rfloor$, with $x_{1}=2$, the binary lengths s of the terms of c and the generalized inverse $r(m)=\min \{k \mid s(k) \geq m\}$ of s are considered. We prove that if c is never a power of 2 beyond the third position, then r is Sturmian there $\left\lfloor\frac{m}{\log _{2}\left(\frac{3}{2}\right)}+\gamma\right\rfloor-1$ with its inhomogeneity γ expressible via an Odlyzko-Wilf constant. In any case we show that on a set of n 's with density between 0.9027 to $0.9028, r_{m}=\left\lfloor\frac{m}{\log _{2}\left(\frac{3}{2}\right)}\right\rfloor-1$ and on an exception set of density between 0.0972 to $0.0973, r_{m}=\left\lfloor\frac{m}{\log _{2}\left(\frac{3}{2}\right)}\right\rfloor$. For the sequence s itself, we show that on a set of n 's with density between 0.8869 to $0.8870, s_{n}=\left\lfloor n \log _{2}\left(\frac{3}{2}\right)\right\rfloor+1$ and on an exception set of density between 0.1130 to $0.1131, s_{n}=\left\lfloor n \log _{2}\left(\frac{3}{2}\right)\right\rfloor+2$. A similar conditional closed formula is obtained for s in the style of the one for the sequence r. (Received February 05, 2017)

