1127-05-351 Jordan Almeter, Samet Demircan, Andrew Kallmeyer, Kevin G Milans* (milans@math.wvu.edu) and Robert Winslow. Graph 2-rankings.
A 2-ranking of a graph G is a proper coloring $f: V(G) \rightarrow[t]$ such that for each path uvw in G, either u and w have distinct colors or $f(v)>f(u)=f(w)$. A 2-ranking is intermediate in strength between a star coloring and a distance-2 coloring. The 2 -ranking number of G, denoted $\chi_{2}(G)$, is the minimum number of colors needed for a 2 -ranking. A classical error-correcting code argument gives an optimal distance-2 coloring of the d-dimensional cube Q_{d} when d is one less than a power of two. We extend the argument to obtain $\chi_{2}^{\prime}\left(Q_{d}\right)=d+1$ for all d.

The edge 2 -ranking number of a graph G, denoted $\chi_{2}^{\prime}(G)$, is the 2 -ranking number of the line graph of G. It is also the least integer t such that the edges of G can be partitioned into matchings M_{1}, \ldots, M_{t} such that M_{k} is an induced matching in the subgraph of G with edge set $\bigcup_{j \in[k]} M_{j}$. What is the edge 2-ranking number of $K_{m, n}$? We obtain an asymptotic result when m is fixed and $n \rightarrow \infty$. For the diagonal case, we show only that $\Omega(n \log n) \leq \chi_{2}^{\prime}\left(K_{n, n}\right) \leq O\left(n^{\log _{2} 3}\right)$. (Received February 07, 2017)

