(wachs@math.miami.edu). Identities involving Eulerian numbers and binomial coefficients.
Chung, Graham and Knuth proved in several ways the identity

$$
\begin{equation*}
\sum_{m=1}^{r+s}\binom{r+s}{m} a_{m, r-1}=\sum_{m=1}^{r+s}\binom{r+s}{m} a_{m, s-1} \tag{1}
\end{equation*}
$$

where $a_{m, j}$ is the number of permutations in S_{m} with j descents. A q-analogue of this identity was proved by ChungGraham and by Han-Lin-Zeng. We proved a symmetric function identity, which upon stable principal specialization becomes the q-analogue just mentioned.

I will discuss various aspects of our work, including a geometric proof of our identity, γ-positivity of certain polynomials, and some other identities involving Eulerian numbers and binomial coefficients. (Received February 05, 2017)

