1127-05-181 Catherine Erbes* (erbescc@hiram.edu), Michael Ferrara, Ryan Martin and Paul Wenger. Stability of the Potential Function.
The potential number of a graph H, denoted $\sigma(H, n)$, is the minimum even integer such that any graphic sequence of length n has a realization containing H as a subgraph. This is the degree-sequence analogue of the extremal number, ex (n, H). Inspired by Simonovits' classical result on the stability of the extremal function, we investigate a notion of stability for the potential number, called σ-stability. Unlike in Simonovits' result, we show that there are classes of graphs which are not σ-stable. We will give a sufficient condition for a graph to be σ-stable, and characterize the stability of those graphs H which have an induced subgraph of order $\alpha(H)+1$ that contains exactly one edge. (Received February 02, 2017)

