We study the class of simple graphs \mathcal{G}^{*} for which every pair of distinct odd cycles intersect in at most one edge. We give a structural characterization of the graphs in \mathcal{G}^{*} and prove that every $G \in \mathcal{G}^{*}$ satisfies the list-edge-coloring conjecture. When $\Delta(G) \geq 4$, we in fact prove a stronger result about kernel-perfect orientations in $L(G)$ which implies that G is $(m \Delta(G): m)$-edge-choosable and $\Delta(G)$-edge-paintable for every $m \geq 1$. (Received February 01, 2017)

