1127-05-156 Jessica McDonald* (mcdonald@auburn.edu), Auburn, AL 36849, and Gregory J Puleo. The list chromatic index of simple graphs whose odd cycles intersect in at most one edge.

We study the class of simple graphs \mathcal{G}^* for which every pair of distinct odd cycles intersect in at most one edge. We give a structural characterization of the graphs in \mathcal{G}^* and prove that every $G \in \mathcal{G}^*$ satisfies the list-edge-coloring conjecture. When $\Delta(G) \geq 4$, we in fact prove a stronger result about kernel-perfect orientations in L(G) which implies that G is $(m\Delta(G):m)$ -edge-choosable and $\Delta(G)$ -edge-paintable for every $m \geq 1$. (Received February 01, 2017)