Let $\Gamma=(V, E)$ be a connected graph of bounded degree. Let $k: V \rightarrow \mathbb{R}, m: V \rightarrow(0, \infty)$ and $b: E \rightarrow(0, \infty)$. An effective one-particle Hamiltonian, H, for a system of quantum harmonic oscillators is given by

$$
\begin{equation*}
H=m^{-\frac{1}{2}}(L+k) m^{-\frac{1}{2}} \tag{1}
\end{equation*}
$$

where m and k denote the multiplication operators generated from m and k, respectively, and

$$
\begin{equation*}
(L \varphi)(x)=\sum_{y:\{x, y\} \in E} b(\{x, y\})(\varphi(x)-\varphi(y)) . \tag{2}
\end{equation*}
$$

Allowing any of these sequences to be i.i.d random variables produces interesting models to study. One can see that setting $b \equiv 1 \equiv m$ and defining k as a sequence of i.i.d. random variables gives the well-known Anderson model.

One of the models of interest, named the Random Edge Laplacian L_{b}, is given by assigning $m \equiv 1, k \equiv 0$, and allowing b to be a sequence of i.i.d random variables. Additionally, we want to study the model given by setting $b \equiv 1, k \equiv 0$, and defining m to be a sequence of i.i.d. random variables, to which we give the name the Random Mass Laplacian K_{m}. In this talk, we will focus on the latter model and some of the localization properties which can be shown via the Fractional Moment Method. (Received January 19, 2015)

