1108-60-451 **Ewain Gwynne** and **Jason Peter Miller*** (jpmiller@mit.edu), Massachusetts Institute of Technology, Department of Mathematics, E18-470, 77 Massachusetts Avenue, Cambridge, MA 02139, and **Xin Sun**. Almost sure multi-fractal spectrum of SLE.

Suppose that η is a Schramm-Loewner evolution (SLE_{κ}) in a smoothly bounded simply connected domain $D \subset \mathbb{C}$ and that ϕ is a conformal map from \mathbb{D} to a connected component of $D \setminus \eta([0, t])$ for some t > 0. The multifractal spectrum of η is the function $(-1, 1) \to [0, \infty)$ which, for each $s \in (-1, 1)$, gives the Hausdorff dimension of the set of points $x \in \partial \mathbb{D}$ such that $|\phi'((1 - \epsilon)x)| = \epsilon^{-s+o(1)}$ as $\epsilon \to 0$. We rigorously compute the a.s. multifractal spectrum of SLE, confirming a prediction due to Duplantier. As corollaries, we confirm a conjecture made by Beliaev and Smirnov for the a.s. bulk integral means spectrum of SLE and we obtain a new derivation of the a.s. Hausdorff dimension of the SLE curve for $\kappa \leq 4$. Our results also hold for the SLE_{κ}(ρ) processes with general vectors of weight ρ . (Received January 19, 2015)