1108-60-265 **Dapeng Zhan***, Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI 48823. *Time Reversal Symmetry for Schramm-Loewner Evolution.*

The Schramm-Loewner evolution with parameter $\kappa > 0$ (SLE_{κ}) is a family of random planar curves that have been proven to be the scaling limit of a variety of two-dimensional lattice models in statistical mechanics. SLE_{κ} is defined by solving Loewner differential equation with driving function being $\sqrt{\kappa}B(t)$, where B(t) is a standard Brownian motion. In this review talk, I will first describe the Loewner differential equation, and how it generates an SLE_{κ} curve. Then I will list results of time reversal symmetry for SLE that have been proved so far, and briefly explain the ideas of the proofs. (Received January 15, 2015)