1108-57-586 Rosemary K Guzman* (rosemary-guzman@uiowa. edu), University of Iowa, Department of Mathematics, 14 Maclean Hall, Iowa City, IA 52242. Special subgroups of hyperbolic 3-manifold groups.
In the 1990's, Culler, Shalen, and their co-authors initiated a program to understand the relationship between the topology and geometry of a closed hyperbolic 3-manifold. I extend those results to the setting of hyperbolic 3-manifolds with $k=5$-free fundamental group.

I have shown that the following geometric statement is true modulo the group-theoretic statement that proceeds it: Geometric Statement: If M is a closed, orientable, hyperbolic 3-manifold such that $\pi_{1}(M)$ is k-free with $k \geq 5$, then when $\lambda=\log (2 k-1)$, there exists a point P in M such that the set of all elements of $\pi_{1}(M, P)$ that are represented by loops of length less than λ is contained in a subgroup of $\pi_{1}(M)$ of rank $\leq k-3$. Group-Theoretic Statement: Given two rank $m=k-2$ subgroups of a free group whose intersection has rank $\geq m=k-2$, their join must have rank $\leq m=k-2$ ($m \geq 2$).

We will discuss a special case of the geometric statement, the $k=5$ case, which I have shown is a theorem and discuss possible implications. (Received January 20, 2015)

