1108-44-340 Jarod Hart* (jarod.hart@wayne.edu) and Guozhen Lu. Hardy Space Estimates for Bilinear Calderón-Zygmund Operators.

In this joint work with Guozhen Lu, we find sufficient conditions for bilinear Calderón-Zygmund operators to be bounded on Hardy spaces. For a bilinear operator $T(f_1, f_2)$, we give sufficient regularity and cancellation conditions for T to be bounded from $H^{p_1} \times H^{p_2}$ into H^p for $0 < p_1, p_2, p \leq 1$. The fundamental difficulty that arises in the bilinear Hardy spaces estimates, which is not present in the linear setting, can be observed in the fact that $f_1, f_2 \in H^1$ does not imply $f_1 \cdot f_2 \in H^{1/2}$, i.e. the pointwise product operator $(f_1, f_2) \mapsto f_1(x)f_2(x)$ is not bounded from $H^1 \times H^1$ into $H^{1/2}$. The product structure of bilinear Calderón-Zygmund operators severely complicates analysis of operators on H^p when 0 , which stems from difficulties in understanding the oscillatory behavior of products of functions. Some Hardyspace paraproduct boundedness properties for bilinear operators will also be discussed. In particular, we will introduce $a paraproduct <math>\Pi(f_1, f_2)$ that maps (and is bounded) from $H^{p_1} \times H^{p_2}$ into H^p and resembles the product operator, $\Pi(f_1, f_2)(x) \approx f_1(x)f_2(x)$, in the appropriate sense. (Received January 18, 2015)