1108-14-200 Jiwon Kim^{*} (kim609@indiana.edu). Fixed Points on Period Spaces and Conjugacy Classes. Let $\mathcal{F}^{wa} = \mathcal{F}^{wa}(\mathbb{G}, \mathcal{N})$ be a p-adic period space, and $J^{\mathbb{G}} = \underline{Aut}^{\otimes}(N^{\mathbb{G}})$ be the associated automorphism group of the *G*-isocrystal. Then we can assume that $J^{\mathbb{G}}$ is an inner form of *G*. Let *j* be a regular elliptic element $J^{\mathbb{G}}(\mathbb{Q}p)$, and denote by $\operatorname{Fix}(j|\mathcal{F}^{wa})$ the set of fixed points of *j* on \mathcal{F}^{wa} . Let $x_0 \in \operatorname{Fix}(j|\mathcal{F}^{wa})$ be a 'base point'. One can then associate to any $x \in \operatorname{Fix}(j|\mathcal{F}^{wa})$ of *j* a rational conjugacy class in $G_{\mathcal{F}_{x_0}}$. We study this map from $\operatorname{Fix}(j|\mathcal{F}^{wa})$ to the set of rational conjugacy classes in $G_{\mathcal{F}_{x_0}}$. (Received January 13, 2015)