1108-11-67 William C. Abram* (wabram@hillsdale.edu), 33 East College Street, Hillsdale, MI 49242, and Artem Bolshakov and Jeffrey C. Lagarias (lagarias@umich.edu). Intersections of multiplicative translates of 3-adic Cantor sets.
We discuss a 3 -adic generalization of a question of Erdös on the ternary digits of powers of 2 . Let $\Sigma_{3, \overline{2}}$ be the 3 -adic Cantor set consisting of all 3 -adic integers whose expansions omit the digit 2 . The exceptional set $\mathcal{E}\left(\mathbb{Z}_{3}\right) \subset \mathbb{Z}_{3}$ consists of all 3 -adic integers λ such that, for infinitely many $n, 2^{n} \lambda$ is in $\Sigma_{3, \overline{2}}$. It is known that the exceptional set has Hausdorff dimension at most $\frac{1}{2}$, and it has been conjectured that it has Hausdorff dimension 0 . We attempt to bound the Hausdorff dimension of $\mathcal{E}\left(\mathbb{Z}_{3}\right)$ by studying finite intersections of multiplicative translates $\Sigma_{3, \overline{2}} \cap \frac{1}{M_{1}} \Sigma_{3, \overline{2}} \cap \cdots \cap \frac{1}{M_{n}} \Sigma_{3, \overline{2}}$ for integers $1<M_{1}<\cdots<M_{n}$, and give a method to compute the Hausdorff dimensions of such intersections by first describing them as the one-sided infinite walks in a finite automaton initiating from a distinguished vertex. We obtain an improved upper bound on the Hausdorff dimension of $\mathcal{E}\left(\mathbb{Z}_{3}\right)$. (Received December 22, 2014)

