Lucas Kramer and Ryan R. Martin* (rymartin@iastate. edu), 396 Carver Hall, Department of Mathematics, Ames, IA 50011. A new upper bound for the size of diamond-free families.
In the Boolean lattice, we say that a family \mathcal{F} has a diamond as a (weak) subposet if there are four distinct subsets A, $\mathrm{B}, \mathrm{C}, \mathrm{D}$ such that $A \subset B \subset D$ and $A \subset C \subset D$. There has been a great deal of recent activity on the size of families in the Boolean lattice with no (weak) copy of a fixed subposet. However, the maximum size of a diamond-free family is still unknown, even asymptotically.

Using a method due to Manske and Shen, we have obtained a new upper bound for the size of a diamond-free family in the n-dimensional Boolean lattice of $(2.2067+o(1))\binom{n}{\lfloor n / 2\rfloor}$. This improves the previous bound of 2.25 , which was due to the authors and Michael Young. (Received January 10, 2015)

