Zoltan Furedi and Zeinab Maleki* (zmaleki@math.iut.ac.ir). On Erdos' conjecture on the number of edges in 5-cycles. Preliminary report.
Erdös, Faudree, and Rousseau in 1992 showed that a graph on n vertices and with at least $\left\lfloor n^{2} / 4\right\rfloor+1$ edges comprise at least $2\lfloor n / 2\rfloor+1$ edges on triangles and this result is sharp. They also considered a conjecture of Erdös that such a graph have at most $n^{2} / 36$ non-pentagonal edges. This was mentioned in other paper of Erdös and also in Fan Chung's problem book.

In this talk we give a graph of $\left\lfloor n^{2} / 4\right\rfloor+1$ edges with much more, namely $n^{2} / 8(2+\sqrt{2})+O(n)$ pentagonal edges, disproving the original conjecture. We also show that this coefficient is asymptotically the best possible. (Received October 27, 2014)

