1126-53-146Pengzi Miao* (pengzim@math.miami.edu), Department of Mathematics, University of Miami,
1365 Memorial Drive, Ungar 515, Coral Gables, FL 33146. Effect of minimal surfaces on boundary
behavior of manifolds with nonnegative scalar curvature.

In 2002, Shi and Tam proved a remarkable theorem concerning the boundary behavior of compact manifolds with nonnegative scalar curvature. Their theorem states that if (Ω^n, g) is a compact manifold with nonnegative scalar curvature with boundary Σ , and if Σ has positive mean curvature H and Σ can be isometrically embedded in \mathbb{R}^n as a strictly convex hypersurface, then

$$\int_{\Sigma} H \, d\sigma \le \int_{\Sigma} H_0 \, d\sigma$$

where H_0 is the mean curvature of the isometric embedding of Σ in \mathbb{R}^n . In this talk, I will discuss a recent work with Siyuan Lu, in which we give a generalization of Shi-Tam's theorem to incorporate the effect of apparent horizon on the geometry of Σ . (Received January 10, 2017)