1126-35-242 Marius Beceanu and Michael Goldberg* (goldbeml@ucmail.uc.edu). Pointwise bounds for the three-dimensional wave propagator. Preliminary report.

The wave equation in \mathbb{R}^3 is subject to a number of "reversed Strichartz" estimates in which solutions are integrated over a time interval and the resulting function is bounded in $L^p(\mathbb{R}^3)$. One elementary bound in this spirit is that the kernel K(t, x, y) of the sine propagator $\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}$ satisfies $\int_{\mathbb{R}} |K(x, y, t)| dt = (4\pi |x - y|)^{-1}$.

We examine the analogous propagator $\frac{\sin(t\sqrt{H})}{\sqrt{H}}P_{ac}(H)$ for operators $H = -\Delta + V$, with the potential V belonging to the Kato-norm closure of test functions. It is already known that many L^p bounds are preserved by such perturbations. We show that the stronger pointwise bound $\int_{\mathbb{R}} |K(x, y, t)| dt \leq C|x - y|^{-1}$ is preserved as well. It appears that pointwise bounds for other spectral multipliers follow as a natural consequence. (Received January 15, 2017)