1126-11-393 Kirsten Eisentraeger (eisentra@math.psu.edu), State College, PA 16802, Russell Miller (russell.miller@qc.cuny.edu), New York, NY 11367, Jennifer Park* (jmypark@umich.edu), Ann Arbor, MI 48109, and Alexandra Shlapentokh (shlapentokha@ecu.edu), Greenville, NC 27858. Hilbert's tenth problem for subrings of Q.

Determining whether there is an algorithm that decides the \mathbb{Q}-solvability of polynomials with integer coefficients is a very difficult open problem, although we know that there are no algorithms that decides the \mathbb{Z}-solvability of polynomials by the work of Matiyasevich, Davis, Putnam, and Robinson. In this talk, we construct a ring R that is "close" to \mathbb{Z} : namely, a ring of the form $\mathbb{Z}\left[S^{-1}\right]$, where S is a "small" set of primes that are inverted in R. Then we will show that determining the R-solvability of polynomials is just as hard as determining the \mathbb{Q}-solvability of polynomials, using the notion of Turing equivalence. This work is joint with K. Eisentraeger, R. Miller, and A. Shlapentokh. (Received January 17, 2017)

