1126-05-185 Martin Rolek* (mrolek@knights.ucf.edu) and Zi-Xia Song. Double-critical graph conjecture for claw-free graphs.

A connected graph G with chromatic number t is double-critical if $G \setminus \{x, y\}$ is (t-2)-colorable for each edge $xy \in E(G)$. The complete graphs are the only known examples of double-critical graphs. A long-standing conjecture of Erdős and Lovász from 1966, which is referred to as the Double-Critical Graph Conjecture, states that there are no other doublecritical graphs. That is, if a graph G with chromatic number t is double-critical, then G is the complete graph on t vertices. This has been verified for $t \leq 5$, but remains open for $t \geq 6$. In this paper, we first prove that if G is a non-complete double-critical graph with chromatic number $t \geq 6$, then no vertex of degree t + 1 is adjacent to a vertex of degree t + 1, t + 2 or t + 3 in G. We then use this result to show that the Double-Critical Graph Conjecture is true for double-critical graphs G with chromatic number $t \leq 8$ if G is claw-free. (Received January 12, 2017)