hypergraphs.
For any posotive integer m, let $[m]:=\{1, \ldots, m\}$. Let n, k, t be positive integers. Aharoni and Howard conjectured that if, for $i \in[t], \mathcal{F}_{i} \subset[n]^{k}:=\left\{\left(a_{1}, \ldots, a_{k}\right): a_{j} \in[n]\right.$ for $\left.j \in[k]\right\}$ and $\left|\mathcal{F}_{i}\right|>(t-1) n^{k-1}$, then there exist $M \subseteq[n]^{k}$ such that $|M|=t$ and $\left|M \cap \mathcal{F}_{i}\right|=1$ for $i \in[t]$. We show that this conjecture holds when $n \geq 3(k-1)(t-1)$.

Let $n, t, k_{1} \geq k_{2} \geq \ldots \geq k_{t}$ be positive integers. Huang, Loh and Sudakov asked for the maximum $\Pi_{i=1}^{t}\left|\mathcal{R}_{i}\right|$ over all $\mathcal{R}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{t}\right\}$ such that each \mathcal{R}_{i} is a collection of k_{i}-subsets of $[n]$ for which there does not exist a collection M of subsets of $[n]$ such that $|M|=t$ and $\left|M \cap \mathcal{R}_{i}\right|=1$ for $i \in[t]$ We show that for sufficiently large n with $\sum_{i=1}^{t} k_{i} \leq$ $n\left(1-(4 k \ln n / n)^{1 / k}\right), \prod_{i=1}^{t}\left|\mathcal{R}_{i}\right| \leq\binom{ n-1}{k_{1}-1}\binom{n-1}{k_{2}-1} \prod_{i=3}^{t}\binom{n}{k_{i}}$. This bound is tight. (Received January 09, 2017)

