1126-03-158 Rachael Alvir, Julia F. Knight* (knight.1@nd.edu) and Charles McCoy. Complexity of Scott sentences.

We consider effective versions of some results of A. Miller and Montalbán. We show that if a countable structure \mathcal{A} has a computable $\Sigma_{\alpha+1}$ Scott sentence and one that is $\Pi_{\alpha+1}$, then it has a computable d- Σ_{α} Scott sentence. We also show that if \mathcal{A} has a computable $\Pi_{\alpha+1}$ Scott sentence, then the orbits of all tuples are defined by computable Σ_{α} formulas. The converse fails. Applying the general results, we show that a finitely generated group has a d- Σ_2 Scott sentence iff the orbit of some generating tuple is defined by a Π_1 formula, and a computable finitely generated group has a computable d- Σ_2 Scott sentence iff the orbit of some generating tuple is defined by a computable Π_1 formula. (Received January 10, 2017)