1113-35-192Michael Pokojovy* (michael.pokojovy@uni-konstanz.de), Dept. of Mathematics and
Statistics, University of Konstanz, 78457 Konstanz, Germany, and J. Marcus Jobe
(jobejm@miamioh.edu), Information Systems and Analytics Dept., Farmer School of Business,
Miami University, Oxford, OH 45056. On Distributed Systems with Noisy Observations.

Let X be a separable Hilbert space and let the linear operator A generate a C_0 -semigroup on X. Within the framework of linear control theory, the observation problem on a finite time horizon T > 0 typically reads as

$$\dot{z}(t) = Az(t) \text{ for } t \in (0,T), \quad z(0) = x,$$

 $w(t) = Cz(t) \text{ in } (0,T)$

for some observation operator C.

In this talk, we assume the observation variable w to be 1D and consider a noisy system given by

$$\dot{z}(t) = Az(t) \text{ for } t \in (0, T), \quad z(0) = x,$$
$$w(t_k) = Cz(t_k) + \varepsilon(t_k) \text{ for } k = 1, \dots, n,$$

where $t_k = Tk/n$ and $\varepsilon(t_k)$'s are i.i.d. univariate r.v. with mean 0 and variance $\sigma^2 > 0$. Note that the system is now observed over a discrete set of time periods.

Assuming the deterministic system is exactly observable at time T, we use the taut string estimator from nonparametric statistics to construct an estimate \hat{x}_n for the initial state x based on noisy observations and prove \hat{x}_n converges in appropriate sense to the actual initial state x reconstructed from the original deterministic system at the optimal rate of $n^{-1/2}$. (Received August 21, 2015)