## Paths.

A dominating path in a graph is a path $P$ such that every vertex outside $P$ has a neighbor on $P$. A result of Broersma from 1988 implies that if $G$ is an $n$-vertex $k$-connected graph and $\delta(G) \geq \frac{n-k}{k+2}$, then $G$ contains a dominating path. The lengths of dominating path include all values from the shortest up to at least min $\{n-1,2 \delta(G)\}$. For $\delta G>a n$, where $a$ is a constant greater that $1 / 3$, the minimum length of a dominating path is at most logarithmic in $n$ when $n$ is sufficiently large (the base of the logarithm depends upon $a$ ). The preceding results are sharp. For constant $s$ and $c^{\prime}<1$ an $s$-vertex dominating path is guaranteed by $\delta(G) \geq n-1-c^{\prime} n^{1-1 / s}$ when $n$ is sufficiently large, but $\delta(G) \geq n-c(s \ln n)^{1 / s} n^{1-1 / s}$ (where $c>1$ ) does not even guarantee a dominating set of size $s$. We obtain minimum degree conditions for the existence of a spanning tree obtained from a dominating path by giving the same number of leaf neighbors to each vertex. (Received August 18, 2015)

