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For a convex body C ⊂ Rn, we define two sequences {σC,k}k≥1 and {σo
C,k}k≥1 of functions on the interior of C. The k-th

members are “mean Minkowski measures in dimension k” which are pointwise dual: σo
C,k(O) = σCo,k(O), where O ∈ intC,

and Co is the dual of C with respect to O. We have

1 ≤ σC,k(O), σo
C,k(O) ≤ k + 1

2
.

The lower bound is attained iff C has a k-dimensional simplicial slice or simplicial projection. The upper bound is

attained iff C is symmetric with respect to O. Klee showed that the condition m∗
C > n− 1 on the Minkowski measure of

C implies that there are n+1 affinely independent affine diagonals meeting at a critical point O∗ ∈ C. In 1963 Grünbaum

conjectured the existence of such point in any convex body. While this conjecture remains open (and difficult), as a

byproduct of the properties of the dual mean Minkowski measures, we show that

n

m∗
C + 1

≤ σC,n−1(O
∗),

and if sharp inequality holds then the Grünbaum conjecture holds. Our assumption is much weaker than Klee’s. (Received

January 13, 2015)
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