1107-47-461

Katie Spurrier Quertermous* (querteks@jmu.edu), Department of Mathematics and Statistics, MSC 1911, James Madison University, Harrisonburg, VA 22807. Unitary Equivalence of Composition C*-algebras on the Hardy and Weighted Bergman Spaces.

If φ is an analytic self-map of the unit disk \mathbb{D} , then the composition operator $C_{\varphi} : f \mapsto f \circ \varphi$ is a bounded operator on the Hardy space $H^2(\mathbb{D})$ and on the weighted Bergman spaces $A^2_{\alpha}(\mathbb{D})$ for $\alpha > -1$. In the Hardy space setting, several authors have investigated the structures of the C*-algebras $C^*(C_{\varphi}, \mathcal{K})$, where φ is a linear-fractional self-map of \mathbb{D} and \mathcal{K} is the ideal of compact operators. In this talk, we extend some of these results to the weighted Bergman space setting. We show that if φ is a linear-fractional, non-automorphism self-map of \mathbb{D} that fixes a point on the unit circle, then the unital C*-algebra generated by C_{φ} and the ideal of compact operators on A^2_{α} is unitarily equivalent to the unital C*-algebra generated by C_{φ} and the ideal of compact operators on H^2 . We also establish a unitary equivalence between constant multiples of related weighted composition operators induced by arbitrary linear-fractional self-maps of \mathbb{D} that fix a point on the unit circle. (Received January 20, 2015)