1107-42-258 Sivaram K Narayan* (sivaram.narayan@cmich.edu), Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859. Inverse Factor Poset Problem for Finite Frames.

A frame in an n-dimensional Hilbert space H_n is a possibly redundant collection of vectors $\{f_i\}_{i\in I}$ that span the space. A tight frame is a generalization of an orthonormal basis. We define the factor poset of a frame $\{f_i\}_{i\in I}$ to be a collection of subsets of I ordered by inclusion so that nonempty $J\subseteq I$ is in the factor poset if and only if $\{f_j\}_{j\in J}$ is a tight frame for H_n . The inverse factor poset problem inquires when there exists a frame whose factor poset is some given poset P. We determine a necessary condition for solving the inverse factor poset problem in H_n which is shown to be sufficient for H_2 . We address how factor poset structure is preserved under orthogonal projections. Furthermore, we discuss how many non-isomorphic factor posets are there for a fixed dimension n and number of vectors k and how large can these factor posets be. This is a joint work with Alice Chan, Martin Copenhaver, Logan Stokols, and Allison Theobold. (Received January 16, 2015)