1107-42-214 Jean-Pierre Gabardo^{*} (gabardo[@]mcmaster.ca) and Chun-Kit Lai (cklai@sfsu.edu).

Frames of exponentials on small sets. Preliminary report.

If x_1, \ldots, x_m are finitely many points in \mathbb{R}^d , let $E_{\epsilon} = \bigcup_{i=1}^m x_i + B_{\epsilon}$, where $B_{\epsilon} = \{x \in \mathbb{R}^d, |x| \leq \epsilon\}$. and let \hat{f} denote the Fourier transform of f. Given a positive Borel measure μ on \mathbb{R}^d , we provide a necessary and sufficient condition for the inequalities

$$A \|f\|_{2}^{2} \leq \int_{\mathbb{R}^{d}} |\hat{f}(\xi)|^{2} d\mu(\xi) \leq B \|f\|_{2}^{2}, \quad f \in L^{2}(E_{\epsilon}),$$

to hold for some A, B > 0 and for some $\epsilon > 0$ sufficiently small. If G is a (possibly dense) subgroup of \mathbb{R} , we characterize those measures μ for which the inequalities above hold whenever x_1, \ldots, x_m are finitely many points in G (with ϵ depending on those points, but not A or B). We also point out an interesting connection between this problem and the notion of well-distributed sequence. (Received January 15, 2015)