1107-13-498 Angela Kohlhaas* (angela.kohlhaas@loras.edu). Coefficient Ideals and Cores in Dimension Two.

Let I be an (x, y)-primary monomial ideal in k[x, y] or an \mathfrak{m} -primary ideal in a regular local ring (R, \mathfrak{m}) of dimension two. The coefficient ideal of I is the largest ideal \mathfrak{a} satisfying $\mathfrak{a}I = \mathfrak{a}J$, where J is any minimal reduction of I, and the core is the intersection of all reductions of I. We find an explicit formula for the coefficient ideal of I by linking it to a certain ideal of reduction number one. In the monomial case, this leads to an Alexander-like duality between exponent sets, which we in turn use to explicitly describe the core of I. (Received January 20, 2015)