1107-05-490 Scott Garrabrant* (coscott@math.ucla.edu) and Igor Pak (pak@math.ucla.edu). Recent progress on the Noonan-Zeilberger Conjecture.
Let $R=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a list of patterns, and let m_{1}, \ldots, m_{k} be a list of nonnegative integers. Denote by $A_{n}\left(R ; m_{1}, \ldots, m_{k}\right)$ the number of permutations $\sigma \in S_{n}$ such that σ contains π_{i} exactly m_{i} times, for all $1 \leq i \leq k$. The Noonan-Zeilberger Conjecture states that $A_{n}=A_{n}\left(R ; m_{1}, \ldots, m_{k}\right)$ is always a polynomial-recursive sequence of n, meaning that it satisfies a nontrivial recurrence relation of the form $p_{0}(n) A_{n}=p_{1}(n) A_{n-1}+\ldots+p_{m}(n) A_{n-m}$, where each p_{i} is a polynomial. We present some recent progress on this conjecture. (Received January 20, 2015)

