1107-05-410 **Tom Enkosky***, tenkosky@gmail.com, and **Branden Stone**. *M*-sequences, the Fibonacci sequence, and integer partitions.

We found a connection between M-sequences, the Fibonacci sequence, and integer partitions into distinct parts. A multicomplex \mathcal{M} is a set of monomials in d variables closed under division. Let m_i be the number of monomials in \mathcal{M} of degree i. The associated M-sequence is $(m_0, m_1, m_2, ...)$. Let L_n be the number of M-sequences where the terms of the sequence sum to n. That is, L_n counts the number of multicomplexes with n monomials. The first terms of the sequence $\{L_n\}_{n\geq 0}$ are $1, 1, 2, 3, 5, 8, 12, \ldots$. We used a Fibonacci recurrence to show that this sequence is bounded above by the Fibonacci sequence. We restricted to the case $m_1 = 2$ to show that the sequence is bounded below by the number of integer partitions into distinct parts. (Received January 19, 2015)