1107-05-410 Tom Enkosky*, tenkosky@gmail.com, and Branden Stone. M-sequences, the Fibonacci sequence, and integer partitions.
We found a connection between M-sequences, the Fibonacci sequence, and integer partitions into distinct parts. A multicomplex \mathcal{M} is a set of monomials in d variables closed under division. Let m_{i} be the number of monomials in \mathcal{M} of degree i. The associated M-sequence is $\left(m_{0}, m_{1}, m_{2}, \ldots\right)$. Let L_{n} be the number of M-sequences where the terms of the sequence sum to n. That is, L_{n} counts the number of multicomplexes with n monomials. The first terms of the sequence $\left\{L_{n}\right\}_{n \geq 0}$ are $1,1,2,3,5,8,12, \ldots$. We used a Fibonacci recurrence to show that this sequence is bounded above by the Fibonacci sequence. We restricted to the case $m_{1}=2$ to show that the sequence is bounded below by the number of integer partitions into distinct parts. (Received January 19, 2015)

