1105-54-332 **Jerry Vaughan** and **Catherine Payne***, capayne2@uncg.edu. Continuous functions on ψ -spaces.

Let $\psi(\kappa, \mathcal{M})$ be a ψ -space with underlying set $\kappa \cup \mathcal{M}$ where κ is an infinite cardinal number and \mathcal{M} is a maximum almost disjoint family (MADF) of countably infinite subsets of κ . A MADF $\mathcal{M} \subset [\kappa]^{\omega}$ is called rich provided for every continuous function $f: \psi(\kappa, \mathcal{M}) \to \mathbb{R}$, there exists $r \in \mathbb{R}$ such that $|f^{-1}(r)| = |\psi(\kappa, \mathcal{M})| = |\mathcal{M}|$. A cardinal κ is called a rich cardinal if every MADF $\mathcal{M} \subset [\kappa]^{\omega}$ is rich. We prove that $\kappa \leq \mathfrak{c}$ is rich if and only if $\mathfrak{a} = \mathfrak{c}$, where \mathfrak{a} is the minimum cardinality of a MADF on ω and \mathfrak{c} is the cardinality of the continuum. The first example of a rich MADF was the well known MAFD \mathcal{M} on $\kappa = \omega$ due to S. Mrówka with the property that for every continuous $f: \psi(\omega, \mathcal{M}) \to \mathbb{R}$, there exists $r \in \mathbb{R}$ such that $|\psi(\omega, \mathcal{M}) \setminus f^{-1}(r)| \leq \omega$. (Received September 23, 2014)