1105-11-83T. Alden Gassert* (thomas.gassert@colorado.edu), Department of Mathematics, University
of Colorado Boulder, Campus Box 395, Boulder, CO 80309. Discriminants of simplest 3ⁿ-tic
extensions.

Let $\ell > 2$ be a positive integer, ζ_{ℓ} a primitive ℓ -th root of unity, and K a number field containing $\zeta_{\ell} + \zeta_{\ell}^{-1}$ but not ζ_{ℓ} . In a recent paper, Chonoles et. al. study iterated towers of number fields over K generated by the generalized Rikuna polynomial, $r_n(x,t;\ell) \in K(t)[x]$. They note that when $K = \mathbf{Q}, t \in \{0,1\}$, and $\ell = 3$, the only ramified prime in the resulting tower is 3, and they ask under what conditions is the number of ramified primes small. In this talk, we apply a theorem of Guàrdia, Montes, and Nart to derive a formula for the discriminant of $\mathbf{Q}(\theta)$ where θ is a root of $r_n(x,t;3)$, answering the question of Chonoles et. al. in the case $K = \mathbf{Q}, \ell = 3$, and $t \in \mathbf{Z}$. (Received September 06, 2014)