T. Alden Gassert* (thomas.gassert@colorado.edu), Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, CO 80309. Discriminants of simplest 3^{n}-tic extensions.
Let $\ell>2$ be a positive integer, ζ_{ℓ} a primitive ℓ-th root of unity, and K a number field containing $\zeta_{\ell}+\zeta_{\ell}^{-1}$ but not ζ_{ℓ}. In a recent paper, Chonoles et. al. study iterated towers of number fields over K generated by the generalized Rikuna polynomial, $r_{n}(x, t ; \ell) \in K(t)[x]$. They note that when $K=\mathbf{Q}, t \in\{0,1\}$, and $\ell=3$, the only ramified prime in the resulting tower is 3 , and they ask under what conditions is the number of ramified primes small. In this talk, we apply a theorem of Guàrdia, Montes, and Nart to derive a formula for the discriminant of $\mathbf{Q}(\theta)$ where θ is a root of $r_{n}(x, t ; 3)$, answering the question of Chonoles et. al. in the case $K=\mathbf{Q}, \ell=3$, and $t \in \mathbf{Z}$. (Received September 06, 2014)

