1114-60-132Alexander Kerss (kerssad@cardiff.ac.uk), School of Mathematics, Cardiff University,
Senghennydd Road, Cardiff, CF24 4 YH, United Kingdom, Nikolai N Leonenko
(leonenkon@cardiff.ac.uk), School of Mathematics, Cardiff University, Senghennydd Road,
Cardiff, CF24 4 YH, United Kingdom, and Alla Sikorskii* (sikorska@stt.msu.edu),
Department of Statistics and Probability, Michigan State University, 619 Red Cedar Road, East
Lansing, MI 48824. Fractional Skellam processes in modeling of high frequency financial data.

Recent literature on high frequency financial data includes models that use the difference of two Poisson processes and incorporate a Skellam distribution for forward prices. The exponential distribution of inter-arrival times in these models is not always supported by the data. Fractional generalization of the Poisson process, or fractional Poisson process, overcomes this limitation and has Mittag-Leffler distribution of inter-arrival times. This paper defines fractional Skellam processes via the time changes in Poisson and Skellam processes by an inverse of a standard stable subordinator. An application to high frequency financial data set is provided to illustrate the advantages of models based on the fractional Skellam processes. (Received August 20, 2015)