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For a given triangle, the circumcenter is the unique point in the plane of the triangle at equal distance from all three

vertices. Similarly, the orthocenter is the point of intersection of the altitudes of the triangle. Euler proved that for any

triangle, the midpoints of the sides, the feet of the altitudes and the midpoints of the segments joining the vertices of

the triangle to the orthocenter lie on a circle. The center of this circle is the 9-point center of the triangle. We prove the

following: Let A1, A2, A3, A4 be four points in the plane, no three on a line, all four not on a circle. For all 1 ≤ i ≤ 4,

let Oi and ωi be the circumcenters and the 9-point centers of triangle Ai+1Ai+2Ai+3, respectively. Then the four-point

configurations (O1, O2, O3, O4) and (ω1, ω2, ω3, ω4) are similar. Moreover, the similarity ratio is not constant but depends

on the initial points Ai in a way that is made explicit.) There are many triangle centers: these special points can be

defined either as the result of some geometric construction (as it is the case with the circumcenter, the orthocenter, and

the 9-point center) or may just have a pure algebraic description as explained in the paper. (Received July 31, 2015)
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