1114-51-147 Craig A. Nolder* (nolder@math.fsu.edu), Department of Mathematics, Florida State, University, 1017 Academic Way, Tallahassee, FL 32306. Compactification of Clifford Algebras, Quadratic Spaces and Möbius groups.
We write $\mathbb{R}^{p, q}$ for the quadratic space \mathbb{R}^{p+q} with quadratic form $x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}$. A conformal compactification is topologically a projectivised product of spheres $S^{p} \times S^{q} / \sim$. We also write $\mathcal{C} \ell_{r, s}$ for the Clifford algebra generated over the reals with generators $e_{j}^{2}=1$ for $j=1, \ldots, r$ and $e_{j}^{2}=-1$ for $j=r+1, \ldots, r+s$. In dimensions two and four, we identify quadratic spaces with Clifford algebras. The product of a generic element with its conjugate is the corresponding quadratic form. In this way we have the identifications : complex numbers $\mathbb{C} \approx \mathcal{C} \ell_{0,1} \approx \mathbb{R}^{2,0}$, split complex numbers $\mathcal{C} \ell_{1,0} \approx \mathbb{R}^{1,1}$, quaternions $\mathbb{H} \approx \mathcal{C} \ell_{0,2} \approx \mathbb{R}^{4,0}$, split quaternions $\mathcal{C} \ell_{1,1} \approx \mathcal{C} \ell_{2,0} \approx \mathbb{R}^{2,2}$. We discuss the actions of Möbius groups on the compactifications and in particular have the following identifications : $P S L\left(2, \mathcal{C} \ell_{1,0}\right) \approx S O_{+}(2,2), P S L\left(2, \mathcal{C} \ell_{1,1}\right) \approx$ $\operatorname{PSL}(4, \mathbb{R}) \approx S O_{+}(3,3) .($ Received August 22, 2015)

