1114-05-65 M M Jaradat* (mmjst4@qu.edu.qa), Department of Mathematics, P.O.Box 2713, Doha, Qatar.
On the basis number of the Wreath product of graphs and some related problem.
For a given graph G, the set \mathcal{E} of all subsets of $E(G)$ forms an $|E(G)|$-dimensional vector space over Z_{2} with vector addition $X \oplus Y=(X \backslash Y) \cup(Y \backslash X)$ and scalar multiplication 1.X $X=X$ and $0 . X=\emptyset$ for all $X, Y \in \mathcal{E}$. The cycle space, $\mathcal{C}(G)$, of a graph G is the vector subspace of $(\mathcal{E}, \oplus,$.$) spanned by the cycles of G$. Traditionally there have been two notions of minimalls among bases of $\mathcal{C}(G)$. The basis number, $b(G)$, of G is the least non-negative integer d such that each edge of G appears in at most d edges of the basis. Second, a basis \mathcal{B} is called a minimum cycle basis if its total length is minimum among all bases of $\mathcal{C}(G)$.

The Wreath product $G \rho H$ has the vertex set is $V(G) \times V(H)$ and the edge set is $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1}=u_{2}\right.$ and $v_{1} v_{2} \in$ $E(H)$, or $u_{1} u_{2} \in E(G)$ and there is $\alpha \in \operatorname{Aut}(H)$ such that $\left.\alpha\left(v_{1}\right)=v_{2}\right\}$. In this work, we investigate the basis number for the wreath product of some graphs. Moreover, in a related problem, we construct a minimum cycle bases of the wreath product of the same. (Received August 06, 2015)

