1114-05-65 **M M Jaradat*** (mmjst4@qu.edu.qa), Department of Mathematics, P.O.Box 2713, Doha, Qatar. On the basis number of the Wreath product of graphs and some related problem.

For a given graph G, the set \mathcal{E} of all subsets of E(G) forms an |E(G)|-dimensional vector space over Z_2 with vector addition $X \oplus Y = (X \setminus Y) \cup (Y \setminus X)$ and scalar multiplication $1 \cdot X = X$ and $0 \cdot X = \emptyset$ for all $X, Y \in \mathcal{E}$. The cycle space, $\mathcal{C}(G)$, of a graph G is the vector subspace of $(\mathcal{E}, \oplus, .)$ spanned by the cycles of G. Traditionally there have been two notions of minimalls among bases of $\mathcal{C}(G)$. The basis number, b(G), of G is the least non-negative integer d such that each edge of G appears in at most d edges of the basis. Second, a basis \mathcal{B} is called a minimum cycle basis if its total length is minimum among all bases of $\mathcal{C}(G)$.

The Wreath product $G\rho H$ has the vertex set is $V(G) \times V(H)$ and the edge set is $\{(u_1, v_1)(u_2, v_2)|u_1 = u_2 \text{ and } v_1v_2 \in E(H)$, or $u_1u_2 \in E(G)$ and there is $\alpha \in Aut(H)$ such that $\alpha(v_1) = v_2\}$. In this work, we investigate the basis number for the wreath product of some graphs. Moreover, in a related problem, we construct a minimum cycle bases of the wreath product of the same. (Received August 06, 2015)