Abstract: It is well-known that the sum of integers from 1 to n is

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

But what happens when we add these sums together? Do we have a closed form formula for $\sum_{i=1}^{n} \sum_{j=1}^{i} j=1+3+6+$ $\ldots \frac{1}{2} n(n+1)$? Moreover, what happens if we keep taking the sum of the sums? In general, we will attempt to find a closed form formula for

$$
\sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{a_{1}} \ldots \sum_{a_{m}=1}^{a_{m-1}} a_{m}
$$

We will then look at higher power of integers and repeat the process. Would we have a nice closed form formula for

$$
\sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{a_{1}} \ldots \sum_{a_{m}=1}^{a_{m-1}} a_{m}^{k}
$$

for any positive power k ? The technique used in finding these sums can be used to find a formula for the partial sum of many well-known sequences. It can also be used to count the number of lattice paths under some special conditions. (Received August 16, 2015)

