1102-14-32Jason A. Miller* (millerj@math.osu.edu), 100 Math Tower, 231 West 18th Avenue, Columbus,
OH 43210. Okounkov Bodies of Borel Orbit Closures.

The theory of Okounkov bodies generalizes the relationship between toric geometry and polytopes. The theory associates to a valuation v and line bundle \mathcal{L} on a projective variety, a convex body $\Delta_v(\mathcal{L})$, which encodes information about the variety and line bundle. Spherical varieties are a generalization of certain classes of varieties with group actions such as toric and flag varieties. For these varieties, Okounkov theory can be used to encode information about the *G*-orbits via faces on an associated polytope. However, much of the structure of these varieties is determined by the Borel orbit structure which is generally not well understood. I will discuss original work examining an extension of this correspondence for a certain class of spherical varieties, wonderful group compactifications. Given any Borel orbit closure Z of a wonderful group compactification, the Okounkov construction gives a finite union of faces of the Okounkov polytope. This correspondence enjoys the same properties as in the case of *G*-orbits. The dimension of the space of global sections $H^0(Z, \mathcal{L})$ is given by the number of lattice points in the union of faces. One can then calculate the degree of \mathcal{L} by taking the sum of the volume of these faces. (Received June 27, 2014)