Andrew P. Dove and Jerrold R. Griggs* (j@sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208. Packing Posets in the Boolean Lattice.
Consider copies of a poset P in the family of all subsets of $[n]:=\{1, \ldots, n\}$. It remains open to determine asymptotically the largest size $\mathrm{La}(n, P)$ of a family of subsets of $[n]$ that contains no subposet P, as $n \rightarrow \infty$. Here we consider a new packing problem, which is to maximum the number of pairwise unrelated copies of P in the Boolean lattice of all subsets of $[n]$. When P is a chain on k elements, and the answer is asymptotic to $\frac{1}{2^{k-1}}\binom{n}{\lfloor n / 2\rfloor}$, as $n \rightarrow \infty$, by a result of Griggs, Stahl, and Trotter. We can solve this new problem asymptotically for any P : The maximum is $\sim \frac{1}{c(P)}\binom{n}{\lfloor n / 2\rfloor}$, where the integer $c(P)$ relates to embeddings of P into the Boolean lattice. This problem was independently posed and solved by Katona and Nagy. (Received July 28, 2014)

